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SEPARATION SCIENCE AND TECHNOLOGY, 32(1-4), pp. 327-353, 1997 

DYNAMICS AND RHEOLOGY OF FOULING CAKES FORMED 
DURING ULTRAFILTRATION 

SANDIP DATTA & J .  LEO CADDIS 

Department of Mechanical Engineering 
Clemson University, Clemson, SC 29634, USA 

ABSTRACT 

'The solute cake which forms on a membrane surface during ultrafiltration processes 
I S  well known for its fouling characteristics. The dynamics and rheology of the 
cake are investigated and observed under the action of cross-l'low shear. 
Experiments with slurries having 300 n m  diameter particles of titanium dioxide 
indicate average volume concentrations of 0.56 or 0.57 and show that this cake 
indeed 'flows' with a creeping velocity under applied shear. The cake thickness 
reaches a steady state when the solute advection towards the membrane balances the 
solute mass carried away at the trailing edge by the creeping cake. The viscosity- 
shear rate dependence of this layer is determined experimentally and the 'creeping 
velocity' of the cake is calculated assuming the transverse drag force is determined 
from the Kozeny-Carman equation. Upon instantaneous compression the cake 
compresses while maintaining its mass distribution. The change in cake resistance 
allows interpretation of the pressure modified concentration. The volume 
concentration, determined from the mathematical modeling, is  shown to lie between 
0.54 to 0.65. Observations show that the top few layers of this cake move freely 
with the shearing flow due to the lifting action of normal stresses in the cake under 
external shear. Volume concentrations up to 0.65 are indicated from the analysis. 

INTRODUCTION 

Consider a cross-flow ultrafiltration process where the shear stress i s  applied 

by the flow rate of the bulk solution (slurry) over a flat membrane. The membrane 

i:; supposed to exhibit perfect rejection. The slurry particles when compressed in a 

cake experience a drag force due to the permeate flow rate. This drag force pushes 

the particles towards the membrane and compresses the cake. This drag force is 
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328 DATTA AND GADDIS 

responsible for stabilizing the cake against external disturbances and increasing the 

permeate flow resistance. The cake gets compacted and its viscosity increases, thus 

decreasing the creeping velocity of flow. This drag pressure can be estimated from 

the Kozeny-Carman Equation ( 1 ). There are other models (2) which calculate the 

drag force through a bed of particles. Near the edge of a cake the resistance to flow 

is like single particles or collection of particles. Happel and Brenner ( 3 )  give an 

excellent discussion of drag calculation for two to four spheres freely falling in ;I 

viscous liquid. The drag force is similar to Stokes' drag but with a correction factor 

which is dependent on their separation distances, their radii, and whether or not 

they are free to rotate. The drag force due to Happel and Brenner can be applied to 

the top few layers of the cake, where the absence of other particles above precludes 

any other particle-particle interaction that may occur. 

Saffman (4) discussed the lift of a small sphere in a slow shear flow. He 

showed that the lift deflects and acts on the particles perpendicular to the flow 

direction. Saffman also discussed the relevance of the results to the observations of 

SegrC and Silberberg (5) of small spheres in Poiseuille flow. 

Saffman's constant was predicted as 16.1 and subsequently modified to 8 1.2. 

So0 (6) calculated the constant to be 6.46 by numerical integration. Saffman 

showed that unless the rotating speed is very much greater than the rate of shear for 

a freely rotating particle with angular velocity as given by Einstein' s equation, the 

lift force due to the particle rotation is less by an order of magnitude than that due to 

shear (7). This conclusion is valid when the Reynolds Number based on particle 

diameter is small. The dependence on viscosity is such that the drift velocity should 

be proportional to Re(*/3) if U(x) is independent of v. For a spinning particle this 

Magnus force can be significant (7). 

The question arises whether the Saffman's force is active on particles in a 

packed bed of spheres. Saffman idealized his case by considering a single particle 
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FOULING CAKES FORMED DURING ULTRAFILTRATION 329 

in a shearing flow with boundaries at infinity. In our case however the particles are 

packed in a creeping cake and the top boundary of the flow is far from the 

initiated in detail by Hamaker (9), who investigated the attractive forces between 

spherical particles. He ascribed the common additive force phenomena between 

particles to the London-van der Waals interaction. 

If the particles in the slurry are charged and separated by a solvent having 

electrolytic properties, electrostatic forces may be significant for calculation of 

repulsive (suspending) forces acting on the solute particles. The surface potential 

Yo with electrolyte concentration in the gap separating two planar surfaces having a 

surface charge density d can be calculated from the Grahanie Equation (8). It 

should be instructive to note that divalent or trivalent ion concentrations in the gap 

have a more drastic effect on the potential on the surface of the solid. 

The charge density can also be expressed as equivalent to a capacitor whase 

plates are separated by a distance I/KD, have charge densities f (3 and the potential 

difference Yo. This analogy with a charged capacitor gave rise to the name &fuse 

olrc.tric. doihlr  ltr.yer for describing the ionic atmosphere near a charged surface 

whose characteristic length or thickness is known as the Debye length UKD. The 

inagnitude of the Debye length depends solely on the properties of the liquid and 

aot on any property of the surface such as its charge or potential (8). The 

electrostatic double-layer interaction between charged surfaces in electrolyte was 

c:alculated by Israelachvili (8). As in the case of van der Waals forces this 

electrostatic force is also expressed as a force-distance model. 

All the forces discussed above can be accommodated if one finds the lift force 

on the particles of a shearing slurry experimentally. One of the common 

characterizations of the lift force mechanism is that of the primary normal stress of a 

shearing slurry. The normal stress results from lift forces on particles of the slurry 
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330 DATTA AND GADDIS 

when subjected to a shearing rate. This shearing rate is dependent on the local shear 

stress and viscosity of the slurry. 

The viscosity p (also called the non-Newtonian viscosity or shear rate 

dependent viscosity) is defined analogously to the viscosities for Newtonian fluids, 

( 2 )  5yx = -pyyx; p = PL(C.Y). 

t x x  - ryy = - TI (r)Y$x. 

The primary normal stress coefficients Y l  and Y2 are defined as follows; 

( 3 4  

(3b) 

The functions Y 1 and Y2 are known as the first and second normal stress 

coefficients. respectively; p, V 1 ,  and Y? are sometimes collectively referred to as 

the viscometric functions (10, 11). 

Tyy  - Tzz = - Y2(Y)$x. 

The primary normal stresses can be determined experimentally or can be 

estimated from shear-viscosity data. Normal stresses can be calculated from shear 

viscosity data using for example, Abdel-Khalik, Hassager, Bird model (AKHB) 

(12) or Wagner ( 13) model. The AKHB model is given by 

.-- 

where Y 1 is expressed as a function of the shear rate P. The main disadvantage of 

this model is the improper integral in Equation (4). A similar model wa5 proposed 

by Wagner ( 13) as, 

In our experiment with titania (rutile TiOl)  powder. the viscosity of the slurry 

followed a power law model. Thus one can express the viscosity of the slurry as 

Equation (6) 

p- pm= my"-' 
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FOULING CAKES FORMED DURING ULTRAFILTRATION 331 

where F~ is the viscosity at infinite shear rate, m is a parameter with dimension of 

Pa-sn, while n is a dimensionless parameter. For Newtonian fluids n=l ,  pm=O and 

m is the viscosity. When n<l,  the fluid is said to be pseudoplastic or shear 

thinning, while if n>l the fluid is said to be dilatant or shear thickening. 

There are many models of the concentration dependence for the viscosity of 

slurries. These viscosity-concentration models are useful in determining the cake 

viscosity and ultimately determining its creeping velocity. Some of the models 

widely available in the literature are indicated in Table 1. Note in all these models 

viscosity is only a function of the slurry volume concentration. Therefore all these 

models are valid for shear-independent regimes. One expects the slurry viscosity to 

be a function of the cake concentration and the impressed strain rate as well. 

Some of the force models under discussion are force-distance; while others are 

pressure (stress)-concentration models. For comparison purposes one model can 

be transformed to the other by knowledge of geometry of the particle 

agglomeration. There are many geometric interpretations for estimation of packing 

densities (volume concentrations) of rigid spheres (19, 20, 21, 22). The most 

logical choice is the tetrahedral packing (22) with the interparticle distance being 

such as to make the average volume concentration to be 0.58-0.60, the volume 

concentration for loose random particle packing. Though the maximum volume 

membrane compared to the particle size and cake dimensions. The particles are 

sheared in a slow shear flow (creeping) and the only criterion which is difficult to 

consider here is the effect of other particles nearby. It can be safely assumed that 

the presence of other particles will break up the flow streamlines and at most 

decrease this lift force and not increase it. 

Rubinow and Keller (7) computed the transverse force on il spinning sphere 

moving in a viscous fluid. The calculation was based on small values of Reynolds 

number. For small values of the Reynolds number, this lift force is independent of 
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332 DATTA AND GADDIS 

TABLE I .COMPARISON O F  DIFFERENT VISCOSITY MODELS. 

Viscosity Models 

Einstein (14) 

Batchelor ( 1 S) 
Mooney ( 16) 

Dougherty- 
Krieger 

Leighton- Acrivos 

(18) 

(17) 

Equation 

p=p()( I+?.Sc) 

p=po( I+2.5c+6.2c7 

the fluid viscosity. Again the question arises whether the presence of othcr particles 

alters this lift force. As before it can be argued that the presence ofothei- particles i n  

the vicinity can only reduce this force and never increase i t ,  since other particles will 

break up the streamlines of the flow and thus the effective force experienced hy ;I 

particle will only decrease. 

According to Zydney and Colton ( I )  the pressure drop due to Kozeny-Carman 

drag due to flow through a packed bed having uniform voluiiie concentration C, 

and thickness 6 and comprising of rigid non interacting spheres o f  radius R can be 

expressed as 

Here r is the resistivity of the bed and K is the Kozeny-Carnian constant. Generally 

this constant takes a value between 5 and 7, but other values of K cannot he ruled 

out. Here J is the volume flux through this packed bed and po the solvent 

viscosity. 

Van der Waals forces play a potentially significant role in  ;dl phenomenu 
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FOULING CAKES FORMED DURING ULTRAFILTRATION 333 

involving particles at close spacings. They may not be as strong as Coulombic 

(electrostatic) forces, nevertheless they are present irrespective of the surface 

electrostatic charge configuration of the particles. Israelachvili (8) added to studies 

concentration for ordered particle arrays can reach 0.7796 (19), in practice it  is 

difficult to reach a packed volume concentration beyond a value of 0.68. 

Once the array geometry has been suitably estimated, the interparticle distance 

can be obtained from the volume concentration of the packing and the pressure 

acting on one particle can be expressed in terms of inter-particle forces, which the 

neighboring particles experience. The order of magnitude for all the above forces 

for 300 nm particles under 20 Pa of shear is determined. It was assumed that the 

average cake concentration was 0.57 and the thickness was 100 pm. Table 2 

shows the maximum possible values of these forces under our operating 

conditions 

THEORY 

A membrane is located at y = 0 adjacent to a fluid in the region y>O and 

extracts permeate from x = 0 to x = L. Define a volume of unit depth from x to 

x+Ax and from y = 0 to y = h > 6, 6 being the local instantaneous cake thickness. 

The permeate exits with velocity J in the negative y-direction and fluid enters the top 

of the volume at velocity VT. Conservation of solute, after division by density of 

particle, for the designated volume is 

a6 
at  

C(x,y)u(x,y)dy - C(x+Ax,y)u(x+Ax,y)dy + VTC~AX = [C(X,~)-C&AX. 

( 7 4  
I I 
A similar equation for the solvent phase is 

a6 
at  

= - [C(x,G)-C&-Ax. 
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334 DATTA AND GADDIS 

I .3:F 103 Pa 

TABLE 2. RELATIVE MAGNITUDE OF ALL NORMAL FORCES/STRESSES. 

I maximum occurs at conc.O.3-0.37 

Force /Pressure 

Saffnian 

Rubinow and Keller 

vnn der Waals 

Electric Double Layer 

Happel and Brenner 

Kozeny-Carman Drag 

Priniarv Normal Stress 

Comments 

lift on single particle 

lift on single particle 

attractive 

0=-0.2 C/m*, 10-7 molar 

particles free to rotate 

particles not free to rotate 

C, =0.57, J =3:” 10-5 ds 

Equations (7a) and (7b) may be multiplied respectively by I-CO and Co and 

combined to eliminate VT. resulting in 

a6 
at 

= [C(x,F)-C&Ax. 
(8) 

CleaIly the integrals in Equation (8) vanish for y > 6 ,  since there C(x,y) = Co. 

These integrals represent the excess solute flow at a position over and above the 

flow at the bulk concentration. The term JAxCo represents the solute added and the 

term on the right is the solute which must accumulate in the cake. 

It  is supposed that the cake layers will exist in a region of constant shear stress, 

and that the viscosity of the cake will depend only on the local concentration of the 

cake. In such a case the velocity, u(x,y) ,  of crossflow in the x-direction will be 

according to Equation (9) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
4
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



FOULING CAKES FORMED DURlNG ULTRAFILTRATION 335 

Expansion of the integral at x+Ax of Equation (8) in terms of variables at x and 

use of the Leibnitz procedure for differentiation allows Equation (8) to become 

It is straightforward to simplify this equation for a constant shear stress and 

constant cake concentration which also implies constant viscosity. The solution for 

thickness as a function of time and position for constant concentration layers may 

be accomplished by standard methods. Either the flux must be prescribed or the 

pressure prescribed together with a model for the resistivity of the cake and 

resistance of the membrane. 

If the cake concentration is considered non-uniform there must be some model 

to define the relation of concentration to external stimulus. Such stimuli could 

include applied normal stress, shear stress, solution pH, and electrolyte 

concentration. In the cakes envisioned herein the applied normal stress at any point 

is taken to be the accumulated pressure from the solvent pressure loss induced by 

its passage through the portion of cake from its edge. This stress is modeled to 

correspond to a single value of concentration. 

The creeping cake described here is a packed bed of spheres which are solute 

particles in the slurry. If the cake concentration is variable, say C(x,y), then the 

pressure drop AP(x,y) due to Kozeny-Carman drag at any location can be estimated 

to be 
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336 DATTA AND GADDIS 

Also AP(x,O) = AP(x)~,~,I - R,,J(x), where AP(X)~,~,I is the total pressure drop 

from the feed to the permeate side at any location x. Here AP(x.0) is the trans-cake 

pressure drop and R,J(x) is the pressure drop across the membrane. 

For constant cake concentration C, and constant shear stress z Equation ( 1  I )  

can be simplified and for the Kozeny-Carman drag relationship Equation (1  2) can 

be obtained 
~ K P I ) ~ , ?  Ap = J(x.t); r = 

R, + r6(x,t) R2 ( I  - C$ 

where r is the hydraulic resistivity of the bed of particles. 

At steady state the flux 6(x) and J(x) can be obtained from the above equations 

and 

(14) 

In  the transient phase as the cake accumulates the solute available in the bulk 

slurry decreases and therefore Co in Equations ( 1  3) and (14) may be different from 

the initial value of Co. From Equation (14) the flux distribution J(x), (i.e., 

variation of flux with longitudinal distance x) can be calculated. Subsequently the 

mean flux 7 can be obtained as 

This mean flux can be verified with experimental data of permeate flux. From 

Equation (14) J - x-O.33 when r6 >> R,", the usual 1/3 power dependence. The 

mass balance equation at any longitudinal location (x) is given by the following 

equation. 
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FOULING CAKES FORMED DURING ULTRAFILTRATION 337 

J(x7 co d x ' =  u(x,y) (C(x,y) - CO) dy. 
(16) 

The mws balance in Equation (16) also dictates that at the steady state the mass 

of solute advected towards the niembrane should exactly balance the solute miss 

flowing out due to creeping velocity of the cake. Thus the three variables 6(x), J(x) 

and C, can be determined for the steady state condition. The creeping velocity of 

the cake can be obtained from Equation (9) for ii constant cake concentration C, nnd 

with y I 6 ( x ) .  

I t  is relevant to mention here the effect of the primary normal stresses. The 

authors expect the stresses to be exerted on the particles i n  the slurry and further 

that on top of any dense cake layer a suspended cloudy layer o f  particles will Ihrni 

balancing the local Kozeny-Carnian drag by the l i f t  forces represented by these 

stresses. For this case the volume concentration of this cloudy layer is between 

0.33-0.37 and it flows with a velocity of few niillinieters per second. Tho~igh the 

thickness of this layer is only 4 to 5 pm, it carries a potentially substantial fraction 

of the total solute flow rate exiting that test section. For the situation at hand the 

cloudy layer bears a nearly negligible flow. The primary resistancc and mass is 

estimated to be in the main region of the cake. 

DATA INTERPRETATION AND EXPERIMENTATION 

Viscosity measurements of a slurry of titanium dioxide particles in water were 

conducted for different solute concentrations and over a shear rate range. Thc 

titania particles were rnonodisperse spheres of diameter 300 nm and specific gravity 

of 4.26. A stock solution was created by high shear dispersion o f  volcimc 

concentration of0.354 using 15.3 nil of dispersant Nopc'ospersc 44 in  2203 ml of 

slurry. Water was allowed to evaporate from this slurry raising the concentration 

in steps to 0.548 by volume. The torque was measured in a concentric cylinder- 
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338 DATTA AND GADDIS 

and-bob visconieter (Contraves Rheoniat 30) under different strain rates. The data 

obtained are shown in Figure I .  These data were fitted for viscosities exhibited by 

a power law model as indicated. and from its characteristica. the primary normal 

btress coefficients are evaluated. The model for the first normal stress coefficients 

using Wagner model is indicated (Table 3). The parameters m, n and p- are  

tabulated in Table 3 for different concentrations of titania. 

For titania slurries with the exception of one data point all values of n lie 

between n=0.1 and 0.2. The point which does not fall into the interval proposed by 

Wagner (1 3) is barely beyond the limit. 

Ultrafiltration experiments with the same titania powder were conducted to 

study the transient and steady state behavior of the fouling cake formed on the 

membrane. All experiments were conducted at 40oC and all viscosity data were 

corrected in proportion to solvent viscosity for that temperature. A bulk volume 

concentration of 2*’lO-4 was used for all the experiments conducted with titania. A 

stainless steel flat porous metal (Mott Metallurgical Co. 0.5 pm rating) sheet was 

impregnated with titania slurry, dried and sintered at 2000OF. Two such flat 

membrane sections measuring 234 mm x 54 mm were subjected to cross flow 

ultrafiltration. The flow channel had dimensions of 54  mm x 3 mm. Pressure 

gauges upstream and downstream of the module measured the pressure drop along 

the length of the membrane. A pressure gauge mounted at the center of the 

membrane module read the average transmembrane pressure drop. A magnetic 

flowmeter measured the bulk flow rate which was, in turn, interpreted to estimate 

the shear stress of operation. An orifice flowmeter measured the permeate flow rate 

from which the transient and steady state flux were calculated. Two experiments 

were conducted with operating pressures of 0.259 and 0.241 MPa and shear 

stresses of 17 and 25 Pa respectively. The unfouled membrane resistances were 
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0.58.1 
0.5485 
0.5067 

0.46 
0.3883 
0.3539 

conc35.398 

o conc38.838 

conc468 

conc50.67% 

conc54.848 

0 canc588 

ni n P=- Ag Cg 

55.755 0.1385 0.769 346.8082 1.8615 
37.472 0.1448 0.5326 221.3125 1.8552 
18.854 0.1548 0.2828 102.9419 1.8452 
10.629 0.1466 0.6462 61.8744 1.8534 
3.5287 0.2105 0.0590 13.2347 1.7895 
2.238 0.1225 0.0457 16.0314 1.8775 

0 .01  0. I I I 0 1(10 I (I (I 0 

shear rate ( V s )  

FIGURE I .  Viscosity of Titania Under Different Shear Rates. 

TABLE 3.COMPARISON OF DIFFERENT PARAMETERS OF WAGNER 
MODEL AT DIFFERENT CONCENTRATIONS. 

I Power Law Model p(y)=pm +, rn$"-I) I concentration 
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340 DATTA AND CADDIS 

9.5% lo9 and 3.5* 10' Pa-s/m respectively. The pH of the slurry was measured to 

be 10.41 and 10.62 respectively. 

Once steady state was reached the effect of different pressures on the 

established cake was investigated. The transmembrane pressure drop was stepped 

from 0.241 to 0.655 MPa and back while maintaining the shear stress level. This 

pressure variation was done very quickly (in about 15 minutes), which ensured that 

negligible additional fouling or erosion of the cake occurred in that time period. 

which is reasonable since the time to reach a steady state cake thickness takes from 

6-12 hours in the experiment conducted. From the flux data the cake resistivity was 

determined and the average cake concentration using the Kozeny-Carman 

relationship was evaluated. 

RESULTS AND DISCUSSION 

1 )  Internretation of Extant Results 

Porter's (23) flux data for suspensions were up to 38.5 times higher than 

predictions by a diffusion-based theory. The viscosity for his slurry of polystyrene 

latex is estimated from Mooney's Equation (Table I )  and average cake 

concentrations were estimated to fit his flux data at the indicated recirculation rates. 

The data sets selected for examination are: 

a) styrene-butadiene polymer latex at constant pressure drop of 60 psi and bulk 

concentration varying from 0.05 to 0.5 volume concentration and recirculation rate 

varying from 5 to 40 gpm, and 

b) styrene-butadiene polymer latex at constant recirculation rilte of 1 1.8 gpm with 

bulk concentration varying from 0.0 I to 0.2 and average transmembrane pressure 

drop varying from 20 to 93 psi. 

If one applies for case (a) the creeping cake model (Equations 9, 12-16) the 

inferred cake concentration is shown in Figures 2 and 3. The cake concentration 
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t . .  / . . . . . . . .  . . . . . . . . . . . . .  
0.5s 

II 11. I n.2 11.3 0 . 4  0 . 5  

bulk concentration C, (va l lvo l )  

FIGURE 2 .  Average Cake Concentration Under Different Shear and Bulk 
Concentrations (Porter). 

. . . . . . . . . .  i . . . . . . . . . . . . . . . . .  " " " I  

0.5s  
10 I t 1 2  10.1 l(14 10s 

shear slress expcrirnced by cake (Pa) 

FIGURE 3. Average Cake Concentration Under Different Shear Rates (Porter). 
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342 DATTA AND GADDIS 

for each operating point corresponds to the value which balances the niass flow 

towards the membrane with that sloughed off at the trailing edge of the creeping 

cake. The thickness distribution 6(x) o f  the cake 15 obtained from ;i balance o f  

pressure with Kozeny-Carman drag and miss  flow of the cake. This thickness 

(Equations 12 and 13) yields a distribution J(x) whose average v:iitie is the 

observed mean flux. From Figure 2 it  i s  apparent that higher bulk concentixtions 

correspond to higher cake concentrations. The cake concentrations lie within a 

range of 0.58 to 0.64. These values are very close to the concentrations of r;indom 

or close packed spherical particles. The conccntrntion estimate is quite sensitive to 

the viscosity model used to correlate concentration with viscosity. Though 

Mooney's model ( 18) may be adequate for high strain rates (high shear stresses) i t  

may underpredict the viscosity values at smaller strain rates. This inference can be 

drawn easily based on the experimental viscosity values for titania given in  Figure 

I .  Figure 2 also shows that at constant bulk concentrations higher recirculation 

rates lower average cake concentration. 

tion of cake concentration with the bulk solution is almost linear lor 

all the recirculation rates. If the shear stress is estimated by standard niethods, 

Figure 3 results. Interpretation of the phenomena in ternis of shear stress does not 

clearly diminish the complexity of dependence of the cake concentration on 

operating parameters. 

For case (b) the recirculation was kept constiint. The da ta  from this sel :ire 

shown in Figure 4 as the effect of strain rate in the cake on the cake concentration. 

The cake concentration can be expected to decline with increasing strain r-nte which 

dilates the cake dynamically. Because the recirculation rate here was kept constant, 

t any concentration must also be constant. But strain rate varied 

with cake properties in response to the only other variable, pressure. The cake 

concentration varies with the total trans-cake pressure drop (Figure 5 )  a s  
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FIGURE 4. Average Cake Concentration Under Different Strain Rates and Bulk 
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344 DATTA AND GADDIS 

anticipated. Higher pressure causes a higher compaction of the cake. The range in 

average cake concentration for set (b) is much less for set (a). This is attributed to 

smaller range in shear stress and bulk concentration. 

2) Intermetation of Current Results 

Experiments with titania slurry were carried out; the viscosity data (Figure 1 )  

were used to formulate predictions. Equation (10) was solved using a constant 

cake concentration C, and a constant shear stress z for the transient behavior and it 

can be seen from Figures 6 and 7 that experimental data and theoretical predictions 

agree quite well. The cake concentrations which match the theoretical prediction 

with the experimental value were 0.57 and 0.56, respectively, for the high 

resistance and low resistance membranes. 

A cake was established virtually as shown in Figure 7 by a period of initial 

operation at a shear stress of 17 Pa and an operating pressure of 0.241 MPa. Once 

the steady state was reached, keeping the shear stress constant (same bulk flow 

rate) the pressure was changed in sequential steps from 0.241 Pa to 0.655 MPa and 

hack. As indicated in Figure 8, little hysteresis was observed. 

For the steady state condition i.e., the first point on Figure 8, a calculation of 

the solute mass excess integrals may be made as in Equation (16) or (8) at any pair 

of points, x and x+Ax. The right side of Equation (8) is zero for steady state. For 

ii certain step Ax and the right side zero, the mean flux which agrees with the 

difference in the adjacent integrals may be computed. Stepping along the membrane 

allows the generation of J(x) and &x), with C(x,y) assumed at all interior points. 

This is the steady-state solution to the integral Equation (8). There are many 

concentrations C(x,y) which satisfy this steady-state flux, pressure condition. Each 

produces different thickness distributions for the cake, however, the response of 

these cakes is vastly different for the excursion of Figure 8. 
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FIGURE 6. Transient Flux Variation for Titania Experiment, 
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FIGURE 8. Average Flux Data for Steady-State and Pressure Excursion Points. 

For the elevated pressure points of Figure 8 the flux will increase, but within a 

short duration there is minimal opportunity for accumulation or migration of the 

cake. As the load on the cake increases, so must the concentration; however, the 

amount of solute must remain fixed at each position. A new distribution of 

concentration will occur which maintains the amount of solute and balances the 

applied pressure against the hydraulic resistance. 

The C(x,y) is sought in the implicit form C(O;;), where (s,,; is the local 

compressive stress from accumulated drag on the cake given by 

~ j ,  = -1 dy = - 1:) dy. 
aY 

The variation of C(O,,) should be subject to the observations from Porter's 

data, (0.58 < C, < 0.64 at 0.138 MPa 5 P 5 0.641 MPa). Our transient analysis 

suggested 0.56 or 0.57 for the mean cake concentration at 0.241 MPa. Trial and 
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error methods were used to develop the C(o;;) shown i n  Figure 9. A sequence of 

approximations resulted in both the steady state and excursion fits indicated on 

Figui-e 8. Refinements less than 0.003 in concentration were not pursued. 

Each symbol on Figure 9 represents conditions ot intermediate locations dong 

the membrane for the observed points shown on Figure 8. The point at 

concentration 0.54 and the group of points near the concentr;ition 0.56 represent 

calculated concentrations at different locations on the membrane h r  the steady state 

condition. The average concentration for this operating point was 0.56 a s  earlier 

suggested from the transient calculations. 

I t  is clear that the cake concentrntion is ii function of the impressed pressure on 

the cake. The cake resistance begins ;it ;I concentration ;ihout 0.54 and the 

concen [ration increases to 0.65 as y 111 p to t ical I y . At maxi mu ni pressu rc the 

concentration approaches the maximum random packing concentration o f  spherical 

particles (0.68). 

The creeping velocity of the cake at the exit of the membrane can now be 

estimated from the cake thickness and concentration data. Figure I0 shows the 

creeping cake velocity as a function of the position in  the cake. This velocity is 

only a few microns per second and the cake can be called a 'creeping' cake. The y- 

distance for the top of each curve yield the local cake thickness 6(x) .  The ratio of 

the length of the membrane to the creeping velocity yields ii measure of the time 

required to purge cake assuming, perhaps counter the evidence (24), the fouling is 

reversible. With an average velocity of 3.5 p m  per second at the exit plane oi' the 

membrane module, the cake will take about 18 hoiirs to traverse the length of thc 

membrane. The average creeping velocity increases wilh downstream distancc ;ind 

the mass flow rate of the cake is an increasing f'unction with thc downstremi 

distance. It can be inferred that this creeping velocity will decreme with increasing 

transmembrane pressure as the cake gets compacted and its viscosity increases. 
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FIGURE 9. Dependence of Local Cake Concentration with Compressive Stress 
in Cake. 
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FIGURE 10. Velocity Profiles in Cake at Different Locations. 
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CONCLUDING REMARKS 

I t  was shown that there are many models which estimate the lifting force (or 

suspension pressure) as function of the applied shear stress. It was seen that in 

most of  the cases higher shear stress implied greater lifting force. From the 

magnitude analysis of these forces i t  was shown that for the operating parameters 

discussed herein, only the electrostatic force and the van der Waals attractive force 

are likely to be significant. These forces are in turn incorporated into a primary 

normal stress model derived from experimental reference. The fluid dynamic 

stresses are generally small compared to the transmembrane pressures, and so are 

significant only in the top few layers of the cake where the Kozeny-Carman drag 

pressure is in the same order of magnitude. For pressures beyond the level of 

dynmmic stress, the cake becomes dense, supported by random contact (or near 

contact). 

Experimental data by Porter (23) was found to indicate consistent behavior 

with the creeping cake hypothesis. The indicated average cake concentrations were 

shown to be affected by transmembrane pressures and shear stresses. This can be 

explained from ii physical standpoint that higher pressure means higher cake 

compaction and vice versa. Increasing shear stresses generate increasing lift forces 

within the cake which suspend the particles in the cake, thus decreasing its 

concentration. However it  was seen that the estimation of the actual viscosity is 

quite important and the solution is sensitive to its chosen value. The average cake 

concentration for Porter's data is in the range of random packing density of uniform 

spheres. Ultrafiltration experiments with a titania slurry also show that the cake 

concentrations are in the range of packing density of rigid, uniform non-interacting 

close packed spheres. 

The mechanism of cake deposition was confirmed with experimental data 

under transient conditions. Continued experiments with a titania slurry under 
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350 DATTA AND GADDIS 

steady-state conditions showed that the cake concentration is a function of the 

impressed pressure. as earlier suggested by Porter's data. After steady state was 

achieved, the flux was observed in a pressure excursion of short enough duration 

that the mass remained fixed. The entire set of steady state and fixed mass points 

were used to produce a concentration dependence on local compressive stress 

C(oj;). This C(o;j) together with the Kozeny-Carman model and measured 

viscosity in a force balance with mass conservation form a consistent model. The 

model allows the calculation of cake thickness distribution and the creeping velocity 

of the cake. 

NOMENCLATURE 

Ap, Cp Constants (Table 3). 

C, C(x,y),c Cake concentration at any la-ation (x,y) in cake. 

Bulk concentration of feed solution, initial bulk concentration. 

Average volume concentration of cake. 

Maximum possible concentration of the slurry at which its viscosity 
is infinite. 

Pressure drop (through a packed bed of spheres). 

Total transmembrane pressure drop. 

Pressure drop at any location of cake (x,y). 

Incremental x. 

Height ofthe control volume. 

See definition [Equation (9)]. 

Transient flux at time t at any location x of the membrane. 

Permeate flux, steady state flux as a function of longitudinal distance 
of membrane. 

Length averaged mean flux value at steady state. 
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FOULING CAKES FORMED DURING ULTRAFILTRATION 35 1 

Kozeny-Carman constant (Equation I ) .  

Constant of AKHB Model (Equation 4 ) , ~  (2,3). 

Length of membrane. 

Constants of shear-viscosity model for power law liquids (Equation 
6). 

Parameter of Wagner model (Equation 5) .  

Local Pressure. 

Particle radius. 

Cake resistivity (Equation 12). 

Resistance of membrane (APIJo). 

Time. 

Velocity of feed flow/creeping cake. 

Velocity of flow at the top of the control volume. 

Coordinate denoting longitudinal direction of feed flow. 

Coordinate denoting perpendicular direction away from the 
membrane. 

Greek Symbols 

p, y, yi; 

6, 6(x,t) 

KD 

P 

Po Solvent dynamic viscosity. 

Pc 

I.I- 

Strain rate due to imposed shear stress, in direction i j .  

Thickness of fouling cake. 

Reciprocal of Debye length in solvent. 

General dynamic viscosity (slurry or solvent). 

Cake viscosity at average cake concentration C,. 

Solvent dynamic viscosity at infinite strain rate. 
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352 DATTA AND GADDIS 

(5 

oij 

T, Ti; 

yo Surface charge potential. 

YI 

y2 

Surface charge density of solute particles. 

Total compressive stress i n  cake in y direction. 

Shear stress, stress tensor in direction i.,i. 

First normal stress coefficient (Equation 3a). 

Second normal stress coefficient (Equation 3b). 
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