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DYNAMICS AND RHEOLOGY OF FOULING CAKES FORMED
DURING ULTRAFILTRATION

SANDIP DATTA & J. LEO GADDIS

Department of Mechanical Engineering
Clemson University, Clemson, SC 29634, USA

ABSTRACT

The solute cake which forms on a membrane surface during ultrafiltration processes
is well known for its fouling characteristics. The dynamics and rheology of the
cake are investigated and observed under the action of cross-flow shear.
Experiments with slurries having 300 nm diameter particles of titanium dioxide
indicate average volume concentrations of 0.56 or 0.57 and show that this cake
indeed 'flows' with a creeping velocity under applied shear. The cake thickness
reaches a steady state when the solute advection towards the membrane balances the
solute mass carried away at the trailing edge by the creeping cake. The viscosity-
shear rate dependence of this layer is determined experimentally and the ‘creeping
velocity' of the cake is calculated assuming the transverse drag force is determined
from the Kozeny-Carman equation. Upon instantaneous compression the cake
compresses while maintaining its mass distribution. The change in cake resistance
allows interpretation of the pressure modified concentration. The volume
concentration, determined from the mathematical modeling, is shown to lie between
0.54 to 0.65. Observations show that the top few layers of this cuke move freely
with the shearing flow due to the lifting action of normal stresses in the cake under
external shear. Volume concentrations up to 0.65 are indicated from the analysis.

INTRODUCTION
Consider a cross-flow ultrafiltration process where the shear stress is applied
by the flow rate of the bulk solution (slurry) over a flat membrane. The membrane
15 supposed to exhibit perfect rejection. The slurry particles when compressed in a
cake experience a drag force due to the permeate flow rate. This drag force pushes

the particles towards the membrane and compresses the cake. This drag force is
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responsible for stabilizing the cake against external disturbances and increasing the
permeate flow resistance. The cake gets compacted and its viscosity increases, thus
decreasing the creeping velocity of flow. This drag pressure can be estimated from
the Kozeny-Carman Equation (1). There are other models (2) which calculate the
drag force through a bed of particles. Near the edge of a cake the resistance to flow
is like single particles or collection of particles. Happel and Brenner (3) give an
excellent discussion of drag calculation for two to four spheres freely falling in a
viscous liquid. The drag force is similar to Stokes' drag but with a correction factor
which is dependent on their separation distances, their radii, and whether or not
they are free to rotate. The drag force due to Happel and Brenner can be applied to
the top few layers of the cake, where the absence of other particles above precludes
any other particle-particle interaction that may occur.

Saffman (4) discussed the lift of a small sphere in a slow shear flow. He
showed that the lift deflects and acts on the particles perpendicular to the flow
direction. Saffman also discussed the relevance of the results to the observations of
Segré and Silberberg (5) of small spheres in Poiseuille flow.

Saffman's constant was predicted as 16.1 and subsequently modified to 81.2.
Soo (6) calculated the constant to be 6.46 by numerical integration. Saffman
showed that unless the rotating speed is very much greater than the rate of shear for
a freely rotating particle with angular velocity as given by Einstein' s equation, the
lift force due to the particle rotation is less by an order of magnitude than that due to
shear (7). This conclusion is valid when the Reynolds Number based on particle
diameter is small. The dependence on viscosity is such that the drift velocity should
be proportional to Re(2/3) if U(x) is independent of v. For a spinning particle this
Magnus force can be significant (7).

The question arises whether the Saffman's force is active on particles in a

packed bed of spheres. Saffman idealized his case by considering a single particle
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in a shearing flow with boundaries at infinity. In our case however the particles are
packed in a creeping cake and the top boundary of the flow is far from the
initiated in detail by Hamaker (9), who investigated the attractive forces between
spherical particles. He ascribed the common additive force phenomena between
particles to the London-van der Waals interaction.

If the particles in the slurry are charged and separated by a solvent having
clectrolytic properties, electrostatic forces may be significant for calculation of
repulsive (suspending) forces acting on the solute particles. The surface potential
W with electrolyte concentration in the gap separating two planar surfaces having a
surface charge density ¢ can be calculated from the Grahame Equation (8). It
should be instructive to note that divalent or trivalent ion concentrations in the gap
have a more drastic effect on the potential on the surface of the solid.

The charge density can also be expressed as equivalent to a capacitor whose
plates are separated by a distance 1/kp, have charge densities + ¢ and the potential
difference Y. This analogy with a charged capacitor gave rise to the name diffuse
electric double layer for describing the ionic atmosphere near a charged surface
whose characteristic length or thickness is known as the Debye length 1/kp. The
magnitude of the Debye length depends solely on the properties of the liquid and
not on any property of the surface such as its charge or potential (8). The
clectrostatic double-layer interaction between charged surfaces in electrolyte was
calculated by Israelachvili (8). As in the case of van der Waals forces this
electrostatic force 15 also expressed as a force-distance model.

All the forces discussed above can be accommodated if one finds the lift force
on the particles of a shearing slurry experimentally. One of the common
characterizations of the lift force mechanism is that of the primary normal stress of a

shearing slurry. The normal stress results from lift forces on particles of the slurry
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when subjected to a shearing rate. This shearing rate is dependent on the local shear
stress and viscosity of the slurry.
The viscosity { (also called the non-Newtonian viscosity or shear rate

dependent viscosity) is defined analogously to the viscosities for Newtonian fluids,

Tyx = WYy M= H(CY). (2)
The primary normal stress coefficients | and ¥, are defined as follows;
Tax = Tyy = = 1 (V¥ (3a)
Ty = T = = VsV (3b)

The functions ¥ and ¥, are known as the first and second normal stress
coetficients, respectively; p, ', and W> are sometimes collectively referred to as
the viscometric functions (10, 11).

The primary normal stresses can be determined experimentally or can be
estimated from shear-viscosity data. Normal stresses can be calculated from shear
viscosity data using for example, Abdel-Khalik, Hassager, Bird model (AKHB)
(12) or Wagner (13) model. The AKHB model is given by

wi(p)= 4Ka ) _“(f) x

T 5 a2
. P )
where W is expressed as a function of the shear rate 8. The main disadvantage of
this model is the improper integral in Equation (4). A similar model was proposed
by Wagner (13) as,
¥1(B)=- I\[I_dil(_ﬁ)
dp 5)
In our experiment with titania (rutile TiO2) powder, the viscosity of the slurry
followed a power law model. Thus one can express the viscosity of the slurry as
Equation (6)
B poo= my™! 6)
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where |l is the viscosity at infinite shear rate, m is a parameter with dimension of
Pa-sM, while n is a dimensionless parameter. For Newtonian fluids n=1, l.=0 and
m is the viscosity. When n<I, the fluid is said to be pseudoplastic or shear
thinning, while if n>1 the fluid is said to be dilatant or shear thickening.

There are many models of the concentration dependence for the viscosity of
slurries. These viscosity-concentration models are useful in determining the cake
viscosity and ultimately determining its creeping velocity. Some of the models
widely available in the literature are indicated in Table 1. Note in all these models
viscosity 1s only a function of the slurry volume concentration. Therefore all these
models are valid for shear-independent regimes. One expects the slurry viscosity to
be a function of the cake concentration and the impressed strain rate as well.

Some of the force models under discussion are force-distance; while others are
pressure (stress)-concentration models. For comparison purposes one model can
be transformed to the other by knowledge of geometry of the particle
agglomeration. There are many geometric interpretations for estimation of packing
densities (volume concentrations) of rigid spheres (19, 20, 21, 22). The most
logical choice is the tetrahedral packing (22) with the interparticle distance being
such as to make the average volume concentration to be 0.58-0.60, the volume
concentration for loose random particle packing. Though the maximum volume
membrane compared to the particle size and cake dimensions. The particles are
sheared in a slow shear flow (creeping) and the only criterion which is difficult to
consider here is the effect of other particles nearby. It can be safely assumed that
the presence of other particles will break vup the flow streamlines and at most
decrease this lift force and not increase it.

Rubinow and Keller (7) computed the transverse force on a spinning sphere
moving in a viscous fluid. The calculation was based on small values of Reynolds

number. For small values of the Reynolds number, this lift force is independent of
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TABLE | .COMPARISON OF DIFFERENT VISCOSITY MODELS.
Viscosity Models Equation Comments
- D g .
Einstein (14) M=po(1+2.5¢) ¢ <015
= 2 2 .
Batchelor (15) pu=po( [+2.5¢+6.2¢<) ¢ <0.15
Mooney (16) H_ exp(M) 4=2.5, Cinan=0.74,
Lo Cmax=C >0.15
¢20.1°
Dougherty- ~it Cnae _ () 74
Krieger p= “0(1 - LC) 4=2.5, cmax=0.74,
(17 ¢20.15
Leighton-Acrivos L O ,OSL_ICJJ a=3.0, cpux=0.58
(18) e ¢20.15
the fluid viscosity. Again the question arises whether the presence of other particles

alters this lift force. As before it can be argued that the presence of other particles in
the vicinity can only reduce this force and never increase it, since other particles will
break up the streamlines of the flow and thus the etfective force experienced by a
particle will only decrease.

According to Zydney and Colton (1) the pressure drop due to Kozeny-Carman
drag due to flow through a packed bed having uniform volume concentration C¢
and thickness & and comprising of rigid non interacting spheres of radius R can be
expressed as

_9%KJw C3 . gp

5 . d—:rJ.
RZ (1-CJ dy ()

AP
Here r is the resistivity of the bed and K is the Kozeny-Carman constant. Generally
this constant takes a value between 5 and 7, but other values of K cannot be ruled
out. Here J is the volume flux through this packed bed and g the solvent
viscosity.

Van der Waals forces play a potentially significant role in all phenomena
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involving particles at close spacings. They may not be as strong as Coulombic
(electrostatic) forces, nevertheless they are present irrespective of the surface
electrostatic charge configuration of the particles. Israelachvili (8) added to studies
concentration for ordered particle arrays can reach 0.7796 (19), in practice it is
difficult to reach a packed volume concentration beyond a value of 0.68.

Once the array geometry has been suitably estimated, the interparticle distance
can be obtained from the volume concentration of the packing and the pressure
acting on one particle can be expressed in terms of inter-particle forces, which the
neighboring particles experience. The order of magnitude for all the above forces
for 300 nm particles under 20 Pa of shear is determined. It was assumed that the
average cake concentration was 0.57 and the thickness was 100 pm. Table 2
shows the maximum possible values of these forces under our operating

conditions.

THEORY
A membrane is located at y = 0 adjacent to a fluid in the region y>0 and
extracts permeate from x = 0 to x = L. Define a volume of unit depth from x to
x+Ax and from y =0 to y = h > §, 8 being the local instantaneous cake thickness.
The permeate exits with velocity J in the negative y-direction and fluid enters the top
of the volume at velocity vy. Conservation of solute, after division by density of
pa}rticle, for the designz)lted volume is
J C(x,y)u(x,y)dy - j C(x+Ax,y)u(x+Ax,y)dy + vrCpAx = [C(x,S)—C()]ﬁAx.
' ' ) (7a)

A similar equation for the solvent phase is

j [1-C(x,y)]u(x,y)dy -f [1-C(x+Ax,y)]u(x+Ax,y)dy + vi{1-CplAx - JAX

=- [C(x,a)-C(,ﬁs-Ax.
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TABLE 2. RELATIVE MAGNITUDE OF ALL NORMAL FORCES/STRESSES.

Force /Pressure Max Magnitude Comments
Saffman 6.2%10- !N lift on single particle
Rubinow and Keller 2.810-13N lift on single particle
van der Waals 2%109N attractive
Electric Double Layer 2%10-8N 6=-0.2 C/m?, 10-7 molar
Happe! and Brenner 6.57%10-14 N particles free to rotate
! 6.68%10-14 N particles not free to rotate
Kozeny-Carman Drag 2.7%10% Pa C. =0.57, J =3*10-5 m/s
Primary Normal Stress 1.3%103 Pa maximum occurs at conc.0.3-0.37

Equations (7a) and (7b) may be multiplied respectively by 1-Cy and Cy and

combined to eliminate v, resulting in

| h
f [C(x,y)-Colu(x,y)dy -f {C(x+Ax,y)-Co]u(x+Ax,y)dy + JAxCy
~[cx.8)-coax.

ot (8)

Clearly the integrals in Equation (8) vanish for y > 8, since there C(x,y) = Cy.

These integrals represent the excess solute flow at a position over and above the

flow at the bulk concentration. The term JAXCy, represents the solute added and the
term on the right is the solute which must accumulate in the cake,

It is supposed that the cake layers will exist in a region of constant shear stress,

and that the viscosity of the cake will depend only on the local concentration of the

cake. In such a case the velocity, u(x,y), of crossflow in the x-direction will be

according to Equation (9)
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v

u(x.y) :K:L)’ where I(x.y) =j ‘t(x)Ldy,

(] A H(C’T) (9)

Expansion of the integral at x+Ax of Equation (8) in terms of variables at x and

use of the Leibnitz procedure for differentiation allows Equation (8) to become

[CONCPNy e,

[cud)-coS + 4 f
A Ko

d
a & (10)

It 1s straightforward to simplify this equation for a constant shear stress and
constant cake concentration which also implies constant viscosity. The solution for
thickness as a function of time and position for constant concentration layers may
be accomplished by standard methods. Either the flux must be prescribed or the
pressure prescribed together with a model for the resistivity of the cake and
resistance of the membrane.

If the cake concentration is considered non-uniform there must be some model
to define the relation of concentration to external stimulus. Such stimuli could
include applied normal stress, shear stress, solution pH, and electrolyte
concentration. In the cakes envisioned herein the applied normal stress at any point
is taken to be the accumulated pressure from the solvent pressure loss induced by
its passage through the portion of cake from its edge. This stress is modeled to
correspond to a single value of concentration.

The creeping cake described here is a packed bed of spheres which are solute
particles in the slurry. If the cake concentration is variable, say C(x,y), then the
pressure drop AP(x,y) due to Kozeny-Carman drag at any location can be estimated

to be

oP _9KI(XMo C(xy)® AP(x,y) = " 9KI(x)Mg Clx,y')2dy’
dy R (1-CayP L, R (-cxy

X}

(11
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Also AP(x,0) = AP(X)total - RmJ(x), where AP(X)tota] 18 the total pressure drop
from the feed to the permeate side at any location x. Here AP(x,0) is the trans-cake
pressure drop and R J(x) is the pressure drop across the membrane.

For constant cake concentration C; and constant shear stress T Equation (11)
can be simplified and for the Kozeny-Carman drag relationship Equation (12) can

be obtained.

AP jxuir= 9KuoC?
Ry, + rd(x,t) R2(1-C.) (12)
where r is the hydraulic resistivity of the bed of particles.

At steady state the flux &(x) and J(x) can be obtained from the above equations

as
2 3
i{R 5;+|5;}=AP—C0 x
pel M2 2 C.-Cy (13)
and

t (G CollaR P - o2 S Clap? = 0
pebr2t Coy } ndP) pcor2t Co '

X—( T CC'C()))%JJ_‘_
pordt Co Jjap

In the transient phase as the cake accumulates the solute available in the bulk

(14)

slurry decreases and therefore C in Equations (13) and (14) may be different from
the initial value of Cy. From Equation (14) the flux distribution J(x), (i.e.,
variation of flux with longitudinal distance x) can be calculated. Subsequently the

mean flux J can be obtained as

J= %j J(x) dx.
o (15)

This mean flux can be verified with experimental data of permeate flux. From

Equation (14) J ~ x0-33 when 18 >> Ry, the usual 1/3 power dependence. The
mass balance equation at any longitudinal location (x) is given by the following

equation.
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f JxY Cqy dx’ =f u(x.y) (C(x,y) - Cp) dy.
o 0 (16)

The mass balance in Equation (16) also dictates that at the steady state the mass
of solute advected towards the membrane should exactly balance the solute mass
flowing out due to creeping velocity of the cake. Thus the three variables d(x), J(x)
and C, can be determined for the steady state condition. The creeping velocity of
the cake can be obtained from Equation (9) for a constant cake concentration C. and
with y < §(x).

[t is relevant to mention here the effect of the primary normal stresses. The
authors expect the stresses to be exerted on the particles in the slurry and further
that on top of any dense cake layer a suspended cloudy layer of particles will form
balancing the local Kozeny-Carman drag by the lift forces represented by these
stresses. For this case the volume concentration of this cloudy layer is between
0.33-0.37 and it flows with a velocity of few millimeters per second. Though the
thickness of this layer is only 4 to 5 um, it carries a potentially substantial fraction
of the total solute flow rate exiting that test section. For the situation at hand the
cloudy layer bears a nearly negligible flow. The primary resistance and mass is

estimated to be in the main region of the cake.

DATA INTERPRETATION AND EXPERIMENTATION

Viscosity measurements of a slurry of titanium dioxide particles in water were
conducted for different solute concentrations and over a shear rate range. The
titania particles were monodisperse spheres of diameter 300 nm and specific gravity
of 4.26. A stock solution was created by high shear dispersion of volume
concentration of 0.354 using 15.3 ml of dispersant Nopcosperse 44 in 2203 ml of
slurry.  Water was allowed to evaporate from this slurry raising the concentration

in steps to 0.548 by volume. The torque was measured in a concentric cylinder-
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and-bob viscometer (Contraves Rheomat 30) under different strain rates. The data
obtained are shown in Figure 1. These data were fitted for viscosities exhibited by
a power law model as indicated, and from its characteristics, the primary normal
stress coefficients are evaluated. The model for the first normal stress coefficients
using Wagner model is indicated (Table 3). The parameters m, n and Yo, are
tabulated in Table 3 for different concentrations of titania.

For titania slurries with the exception of one data point all values of n lie
between n=0.1 and 0.2. The point which does not fall into the interval proposed by
Wagner (13) is barely beyond the limit.

Ultrafiltration experiments with the same titania powder were conducted to
study the transient and steady state behavior of the fouling cake formed on the
membrane. All experiments were conducted at 40°C and all viscosity data were
corrected in proportion to solvent viscosity for that temperature. A bulk volume
concentration of 2% 10-4 was used for all the experiments conducted with titania. A
stainless steel flat porous metal (Mott Metailurgical Co. 0.5 pum rating) sheet was
impregnated with titania slurry, dried and sintered at 2000°F. Two such flat
membrane sections measuring 234 mm x 54 mm were subjected to cross flow
ultrafiltration. The flow channel had dimensions of 54 mm x 3 mm. Pressure
gauges upstream and downstream of the module measured the pressure drop along
the length of the membrane. A pressure gauge mounted at the center of the
membrane module read the average transmembrane pressure drop. A magnetic
flowmeter measured the bulk flow rate which was, in turn, interpreted to estimate

the shear stress of operation. An orifice flowmeter measured the permeate flow rate

from which the transient and steady state flux were calculated. Two experiments
were conducted with operating pressures of 0.259 and 0.241 MPa and shear

stresses of 17 and 25 Pa respectively. The unfouled membrane resistances were



11: 40 25 January 2011

Downl oaded At:

FOULING CAKES FORMED DURING ULTRAFILTRATION

viscosity (Pa-s)
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FIGURE 1. Viscosity of Titania Under Different Shear Rates.

TABLE 3.COMPARISON OF DIFFERENT PARAMETERS OF WAGNER
MODEL AT DIFFERENT CONCENTRATIONS.

convc(:‘,l:l?ziion Power Law Model i(Y)=poo + myn-!) ¥, (y):ABy_CB
m n Hoo Ag Cp

0.58t 55.755 0.1385 0.769 346.8082 | 1.8615
0.5485 37.472 0.1448 0.5326 221.3125 | 1.8552
0.5067 18.854 0.1548 0.2828 102.9419 | 1.8452
0.46 10.629 0.1466 0.6462 61.8744 1.8534
0.3883 3.5287 0.2105 0.0590 13.2347 1.7895
0.3539 2.238 0.1225 0.0457 16.0314 1.8775

¥ extrapolated from lower concentration values
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9.5*10% and 3.5*%10° Pa-s/m respectively. The pH of the slurry was measured to
be 10.41 and 10.62 respectively.

Once steady state was reached the effect of different pressures on the
established cake was investigated. The transmembrane pressure drop was stepped
from 0.241 to 0.655 MPa and back while maintaining the shear stress level. This
pressure variation was done very quickly (in about 15 minutes), which ensured that
negligible additional fouling or erosion of the cake occurred in that time period,
which is reasonable since the time to reach a steady state cake thickness takes from
6-12 hours in the experiment conducted. From the flux data the cake resistivity was
determined and the average cake concentration using the Kozeny-Carman

relationship was evaluated.

RESULTS AND DISCUSSION

1) Interpretation of Extant Results

Porter's (23) flux data for suspensions were up to 38.5 times higher than
predictions by a diffusion-based theory. The viscosity for his slurry of polystyrene
latex is estimated from Mooney's Equation (Table 1) and average cake
concentrations were estimated to fit his flux data at the indicated recirculation rates.
The data sets selected for examination are:

a) styrene-butadiene polymer latex at constant pressure drop of 60 psi and bulk
concentration varying from 0.05 to 0.5 volume concentration and recirculation rate
varying from 5 to 40 gpm, and
b) styrene-butadiene polymer latex at constant recirculation rate of 11.8 gpm with
bulk concentration varying from 0.0l to 0.2 and average transmembrane pressure
drop varying from 20 to 93 psi.
If one applies for case (a) the creeping cake model (Equations 9, 12-16) the

inferred cake concentration is shown in Figures 2 and 3. The cake concentration
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Average Cake Concentration Under Different Shear Rates (Porter).
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for each operating point corresponds to the value which balances the mass tlow
towards the membrane with that sloughed off at the trailing edge of the creeping
cake. The thickness distribution 8(x) of the cake is obtained from a balance of
pressure with Kozeny-Carman drag and mass flow of the cake. This thickness
(Equations 12 and 13) yields u distribution J(x) whose average value is the
observed mean flux. From Figure 2 it is apparent that higher bulk concentrations
correspond to higher cake concentrations. The cake concentrations lie within a
range of 0.58 to 0.64. These values are very close to the concentrations of random
or close packed spherical particles. The concentration estimate is quite sensitive to
the viscosity model used to correlate concentration with viscosity. Though
Mooney's model (18) may be adequate for high strain rates (high sheur stresses) it
may underpredict the viscosity values at smaller strain rates. This inference can be
drawn easily based on the experimental viscosity values for titania given in Figure
1. Figure 2 also shows that at constant bulk concentrations higher recirculation
rates lower average cake concentration.

The variation of cake concentration with the bulk solution is almost linear for
all the recirculation rates. If the shear stress is estimated by standard methods,
Figure 3 results. Interpretation of the phenomena in terms of shear stress does not
clearty diminish the complexity of dependence of the cake concentration on
operating parameters.

For case (b) the recirculation was kept constant. The data from this set arc
shown in Figure 4 as the effect of strain rate in the cake on the cake concentration.
The cake concentration can be expected to decline with increasing strain rate which
dilates the cake dynamically. Because the recirculation rate here was kept constant,
the shear stress at any concentration must also be constant. But strain rate varied
with cake properties in response to the only other variable, pressure. The cake

concentration varies with the total trans-cake pressure drop (Figure 5) as
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anticipated. Higher pressure causes a higher compaction of the cake. The range in
average cake concentration for set (b) is much less for set (a). This is attributed to

smaller range in shear stress and bulk concentration.

2) Interpretation of Current Results

Experiments with titania slurry were carried out; the viscosity data (Figure 1)
were used to formulate predictions. Equation (10) was solved using a constant
cake concentration C, and a constant shear stress T for the transient behavior and it
can be seen trom Figures 6 and 7 that experimental data and theoretical predictions
agree quite well. The cake concentrations which match the theoretical prediction
with the experimental value were 0.57 and 0.56, respectively, for the high
resistance and low resistance membranes.

A cake was established virtually as shown in Figure 7 by a period of initial
operation at a shear stress of 17 Pa and an operating pressure of 0.241 MPa. Once
the steady state was reached, keeping the shear stress constant (same bulk flow
rate) the pressure was changed in sequential steps from 0.241 Pa to 0.655 MPa and
back. As indicated in Figure 8, little hysteresis was observed.

For the steady state condition i.e., the tirst point on Figure 8, a calculation of
the solute mass excess integrals may be made as in Equation (16) or (8) at any pair
of points, x and x+Ax. The right side of Equation (8) is zero for steady state. For
a certain step Ax and the right side zero, the mean flux which agrees with the
difference in the adjacent integrals may be computed. Stepping along the membrane
allows the generation of J(x) and 8(x), with C(x,y) assumed at all interior points.
This is the steady-state solution to the integral Equation (8). There are many
concentrations C(x,y) which satisfy this steady-state flux, pressure condition. Each
produces different thickness distributions for the cake, however, the response of

these cakes is vastly different for the excursion of Figure 8.
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For the elevated pressure points of Figure 8 the flux will increase, but within a
short duration there is minimal opportunity for accumulation or migration of the
cake. As the load on the cake increases, so must the concentration; however, the
amount of solute must remain fixed at each position. A new distribution of
concentration will occur which maintains the amount of solute and balances the
applied pressure against the hydraulic resistance.

The C(x,y) is sought in the implicit form C(gjj), where oj; is the local

compressive stress from accumulated drag on the cake given by

v

ojj = -
i) ay

or,

y

JP

y =-| —dy.

dy

Bixd (17)
The variation of C(oj;) should be subject to the observations from Porter's
data, (0.58 < C. < 0.64 at 0.138 MPa < P £0.641 MPa). Our transient analysis

suggested 0.56 or 0.57 for the mean cake concentration at 0.24]1 MPa. Trial and
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error methods were used to develop the C(gjj) shown in Figure 9. A sequence of
approximations resulted in both the steady state and excursion fits indicated on
Figure 8. Refinements less than 0.003 in concentration were not pursued.

Each symbol on Figure 9 represents conditions at intermediate locations along
the membrane for the observed points shown on Figure 8. The point at
concentration 0.54 and the group of points near the concentration 0.56 represent
calculated concentrations at ditferent locations on the membrane for the steady state
condition. The average concentration for this operating point was 0.56 as cattier
suggested from the transient calculations.

It is clear that the cake concentration is a function of the impressed pressure on
the cake. The cake resistance begins at a concentration about 0.54 and the
concentration increases to 0.65 asymptotically. At maximum pressure the
concentration approaches the maximum random packing concentration of spherical
particles (0.68).

The creeping velocity of the cake at the exit of the membrane can now be
estimated from the cake thickness and concentration data. Figure 10 shows the
creeping cake velocity as a function of the position in the cake. This velocity is
only a few microns per second and the cake can be called o 'creeping’ cake. The y-
distance for the top of each curve yield the local cake thickness 8(x). The ratio of
the length of the membrane to the creeping velocity yields a measure of the time
required to purge cake assuming, perhaps counter the evidence (24), the fouling is
reversible. With an average velocity of 3.5 um per second at the exit plane of the
membrane module, the cake will take about 18 hours to traverse the fength of the
membrane. The average creeping velocity increases with downstream distance und
the mass flow rate of the cake is an increasing function with the downstream
distance. It can be inferred that this creeping velocity will decrease with increasing

transmembrane pressure as the cake gets compacted and its viscosity increases.
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CONCLUDING REMARKS

It was shown that there are many models which estimate the lifting force (or
suspension pressure) as function of the applied shear stress. It was seen that in
most of the cases higher shear stress implied greater lifting force. From the
magnitude analysis of these forces it was shown that for the operating parameters
discussed herein, only the electrostatic force and the van der Waals attractive force
are likely to be significant. These forces are in turn incorporated into a primary
normal stress model derived from experimental reference. The fluid dynamic
stresses are generally small compared to the transmembrane pressures, and so are
significant only in the top few layers of the cake where the Kozeny-Carman drag
pressure is in the same order of magnitude. For pressures beyond the level of
dynamic stress, the cake becomes dense, supported by random contact (or near
contact).

Experimental data by Porter (23) was found to indicate consistent behavior
with the creeping cake hypothesis. The indicated average cake concentrations were
shown to be affected by transmembrane pressures and shear stresses. This can be
explained from a physical standpoint that higher pressure means higher cake
compaction and vice versa. Increasing shear stresses generate increasing lift forces
within the cake which suspend the particles in the cake, thus decreasing its
concentration. However it was seen that the estimation of the actual viscosity is
quite important and the solution is sensitive to its chosen value. The average cake
concentration for Porter's data is in the range of random packing density of uniform
spheres. Ultrafiltration experiments with a titania slurry also show that the cake
concentrations are in the range of packing density of rigid, uniform non-interacting
close packed spheres.

The mechanism of cake deposition was confirmed with experimental data

under transient conditions. Continued experiments with a titania slurry under
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steady-state conditions showed that the cake concentration is a function of the
impressed pressure, as eurlier suggested by Porter's data. After steady state was
achieved, the flux was observed in a pressure excursion of short enough duration
that the mass remained fixed. The entire set of steady state and fixed mass points
were used to produce a concentration dependence on local compressive stress
C(ojj). This C(ojj) together with the Kozeny-Carman model and measured
viscosity in a force balance with mass conservation form a consistent model. The
model allows the calculation of cake thickness distribution and the creeping velocity

of the cake.

NOMENCLATURE
Ap, Cp Constants (Table 3).
C, C(x,y),c Cake concentration at any location (x.y) in cake.
Co. Co(t)  Bulk concentration of feed solution, initial bulk concentration.
Ce Average volume concentration of cake.

Crmax Maximum possible concentration of the slurry at which its viscosity
is infinite,

AP Pressure drop (through a packed bed of spheres).

AP(X)ioral Total transmembrane pressure drop.

AP(x.,y) Pressure drop at any location of cake (x,y).

Ax Incremental x.

h Height of the control volume.

I(x.y) See definition [Equation (9)].

J(x,t) Transient flux at time t at any location x of the membrane.

J, J(x) Permeate flux, steady state flux as a function of longitudinal distance

of membrane.

J Length averaged mean flux value at steady state.
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K Kozeny-Carman constant (Equation 1).

Ka Constant of AKHB Model (Equation 4),e (2,3).

L Length of membrane.

m,n g)onstants of shear-viscosity model for power law liquids (Equation

N Parameter of Wagner model (Equation 5).
Local Pressure.

R Particle radius.

r Cake resistivity (Equation 12).

Rm Resistance of membrane (AP/]g).

t Time.

u(x,y), U  Velocity of feed flow/creeping cuke.

VT Velocity of flow at the top of the control volume.

X Coordinate denoting longitudinal direction of feed flow.

y Coordinate denoting perpendicular direction away from the
membrane.

Greek Symbols

B, v, i Strain rate due to imposed shear stress, in direction i,j.

3, 8(x,t) Thickness of fouling cake.

XD Reciprocal of Debye length in solvent.

il General dynamic viscosity (slurry or solvent).

Lo Solvent dynamic viscosity.

e Cake viscosity at average cake concentration Cg.

Hoo Solvent dynamic viscosity at infinite strain rate.

351
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Sij
T, T

Yo

k&)

DATTA AND GADDIS
Surface charge density of solute particles.
Total compressive stress in cake in y direction.
Shear stress, stress tensor in direction i,).
Surface charge potential.
First normal stress coefticient (Equation 3a).

Second normal stress coetficient (Equation 3b).

ro

(]

6.
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